DIGITAL METEOROLOGICAL SERVICE FOR SIMULATING FUTURE AIR TRAFFIC MANAGEMENT AUTOMATION

WETICE-COMETS Paris, 2011

Carmen Salguero R&D Ingeniería y Servicios Aeroespaciales, S.A. Madrid, Spain

Jesús Gonzalo Aerospace Research Group University of Léon León, Spain

Summary

Who	Partners
Why	Motivation
What	Technical objetives & Definition
How	Technical Approach
Where we are	Progress to date & Key developments

AOB Conclussions and Next Steps

...and Questions

...Introduction & something about us

DMET _____ development Research efforts based on a Collaboration Agreement between University and Company

- University of Leon, (Located in the North of Spain)
- ✓ School of Aerospace Engineering: Aerospace Engineering Lab
- ✓ UAVs, Meteorology
- ✓ Supercomputing Center

- Consultancy Services and Engineering , Aerospace Sector
- Commercial firm 100% Property of the National Institute for Aerospace Technique (INTA), a body of the Spanish Ministry of Defence
- Research and Development activities

Why? **DMET** motivation Introduction and Perspective

DMET Perspective

What?

Technical Objetives and Definition

DMET Definition & Objetives

How? Technical Approach

Model Foundamentals: Structure, Architecture and Data Flow

DMET Fundamentals & Model Structure

Prediction
OriginResult of a full-physic atmospheric model (focused on
specific geographic domains) running in fast-time
simulation and computing live observations at given
time instants.

Basic Model
Structure4D Grid of spatial temporal cells.Size of cells = f (propagation stamp & acceptable
accuracy)

Elements The structure of 4D Grid for a particular weather scenario («t or several t ») is based on the following elements:

 $LAYER \longrightarrow BOX \longrightarrow OBJECT \longrightarrow SCENARIO$

DMET Model Structure

The Layer The Box The Object **Bidimensional element** TEMPERATURE PRESSURE grid. Tailored according + h with the required All layers containing domain. specific atmospheric u & v (WIND COMPONENTS) variable data at level

corrresponding to a One layer per pressure

differentent altitudes levels (pressure levels)

DMET Model Structure

The Object

- Each specific time instant of the forecast is associated with an Object (five boxes)
- •Pressure
- •Temperature
- •The two horizontal wind components
- •Geopotential altitude

DMET Model Structure

The Weather Scenario

The weather Scenario is a series of time-spaced objects covering a certain time spam

DMET Model Features

Domain Size 150*150*20 KM domain successfully contained in a 100 * 100 * 27 cell grid

Forecast time Time domain is discretised in 10 min forecast time steps (15 files are produced per simulation: Time of Forecast: 2,5h

Hardware
RequirementsDetailed domain can be run in a dedicated cluster of 5
computers, 4 cores each (20 cores) / emmbedded in a
supercomputing center

DMET Model Architecture

Data Flow

Fundamentals:
Running of WRF(Weather Reference Forecast)
Weather Local data and satellite information
Mesoscale propagators

Access to external Data Souces and Support to Service delivery is performed through a SWIM middelware

Model outputs are routinely updated as soon as external data is received from several sources of information

Data Sources

DMET Model Architecture

Based on two groups of Data:

•Geographical Data:

GROUND LAYER GENERATION-Geographical Data, Digital Elevation Models NOAA, resolution: 0.5°

Global data for the development of the initial model – NCEP-NOAA

Local data and observations (ground and altitude) for the accuracy improvements and customiizability

Global model

Official MET

Owned MET

ground data

Owned MET

air data

data

Observ.

DBase

MET data

DMET Model Architecture

Data Providers

METEOROLOGICAL INITIAL DATA : Global Forecast System (GFS):

✓ Publicly delivered

✓ Refresh time: 6 horas

✓ Resolution 0.5 °

- Spatial and temporal resolutions are insufficient for ATM applications
- Startig point for mesoscale and regional models

OFICIAL DATA: Spanish Meteorological Agency (AEMET)

•Real Time Observations

- Balloons (parameters in altittude)
- RT: 10 MINUTES
- HIRLAM MODEL
- Met Stations in domain

OWN LOCAL DATA: Ground Meteorological Stations in Domain

•Network of Met Stations deployed on the scene (tailored according to scenario characteristics)

•Geo-referenced observations

•Measuring Rate: 10 minutes

LOCAL AIRBORNE OBSERVATIONS: Aircrafts in domain

•Measurement of interesting parameters along the aircraft flight path

•Enhance the accuracy at diferent altitude levels

DMET Model Architecture

Computational Process: based on the WRF model execution

WRF, Weather Research and Foecasting

Objetive

Fluids Computational dynamics code for atmospheric simulation and weather prediction. Full-physic non-hydrostatic equation model.

Build the next generation mesoscale model (DMET) and provide the neccessary architecture fot the data assimilation

Modular Architecture

Domain definition, boundaries and digital elevation model set up To be run once per simulation site (domain)

- Global data decoding (generates the first meteorological fields)
- Horizontal interpolation of the meteorological data to the domain grid
- Vertical interpolation of the meteorological data to pressure levels
- Observations and Local Data assimilation

Propagation module to produce forecast using fluid mechanics equations

DMET Model Data Publication (I/II)

DMET Model Data Publication (II/II)

Objetive Adapt the outputs to fit the dissemination standard

Data Packages Requirements

- Multiple User support
- Regular and Real Time updating
- Compliance with DDS Technology
- Acceptable bandwith usage
- Provision of user understable data or decoding support

- Hugh size of 4D Meteo Models Instances (~ 5Mb / 2,5 h forecast)
- TOPICS: Basic units of information (datapackets). DDS is based on the reading and writting of these dataobjects

Solution Creation of 2 topics	MetaData	Data header (one instance per scenario) Info for the assembly of the updated model structure
	DMETScenario	Meteo information following the compositional structure set by MetaData
		One instance per layer /Multiple instances

DMET Implementation

Where we are ? Progress to date & Key developments

DMET First Validation Procedures

Validation Model has been tested for accuracy using two kind of official data (AEMET)

•Meteorological forecast service

•Atmospheric sounding data

- Test August, 2010, Santander Airport (North Coast of Spain)
- Results ✓ Excellent matching with HIRLAM forecast (oficial model)
 ✓ Less than 10% mean error in wind speed modules (within the operational range below tropopause)

Larger time spam and different location tests must to be conducted to certify the acceptable QoS for future operational use.

DMET Model Performance (I/II)

Performance Critical Issue in MET simulations (processing time, high resolution, shorter refreshing times, longer forecast...)

Relevant Factors N° of cores, processor architecture, available memory and network Technology

Objetive Improve every sim step in order to get outputs as fast as possible •PARALELL COMPUTING ; process division into smaller tasks, executed in different processor cores

Technologies

•Open MP (Shared Memory): Shares the simulation data among all the processor cores of a single machine by means of a threading protocol.

oMPI (Distributed Memory): Partial tasks are executed in different computers in the same network. ...Better for large domains simulation

oLow latency technology networks (Infiniband): very suitable for MPI applications

DMET Model Performance (II/II)

Transmission speed currently reaches 140 s /object , fully compatible with the cluster performance.

Scaling with number of nodes has a limit, determined by the size of the chopped domains; When larger domains are necessary, the scaling with size is almost lineal.

DMET Simulation of Trajectories (I/II)

OPTIMIZATION OF FLIGHT TRAJECTORIES

- One of the most relevant DMET applications
- Based on future requirements for the ATM automatization and the meteorological influence over aircraft trajectory
- Numerical and analytic methods for aircraft trajectory optimization heve been designed and tested, initially for cruise phase:
- The development, allows a comparison between conventional trajectory prediction simulations and more sophisticated scheme in non-uniform atmospheric conditions
- Test, have included the utilization of cinematic models for several cases of flight level, flight in thermal ascending winds and obstacle negotiation.

DMET Simulation of Trajectories (II/II)

•The most common cost functions include minimum time and minimum consumption

•The importance of wind field knowledge is demostrated

•Next steps shall include dynamic aircraft models, ascending and descending paths and other more complex optimization functions.

DMET Conclusions

- Accurate estimation of atmospheric parameters = Key requirement for future automation of Air Traffic Management
- DMET, is the development of a digital meteo model that combines atmospheric data from several sources into a 4D predictive scenario, available to subscribers by periodic updates
- Final product consists of a 4D grid of pressure, temperature and wind data fields valid over an airspace cube of about 150*150*20 km, within a time interval of 2.5 hours.
- On top of the model, minimum time, minimum consumption and other interesting trajectories are simulated to check the wind impact.
- Preliminary validation is very encouraging, so more effort is currently being dedicated to allow optimal operational requirements.

Thank you!

...any question?