Towards Configuration Support for Collaborative Simulator Development

A Product Line Approach in
 Model Based Systems Engineering

CoMetS 2011, Paris

Henric Andersson, Magnus Carlsson, Johan Ölvander

Dept. of Management and Engineering Linköping University, Sweden

&

Saab Aeronautics, Linköping, Sweden

Presentation of the presenter

- MsC in Control Engineering (1994)
- Modeling and simulation of power plants at ABB
- Saab Aeronautics
 - Flight Control
 - Project Management / Systems Engineering
 - Product Line Engineering
 - Research / PhD (2005 -> 2012)

Content

- Context Simulator Usage
- Model Based Systems Engineering
- Product Line Engineering
- Example application
- Configurator implementation
- Conclusions & Further work

Simulator example 1(3)

Simulator example 2(3)

Simulator example 3(3)

Desktop; batch simulation

Simulator creation from models

The Product Line Approach – a concept for reuse

MODEL BASED DEVELOPMENT

0 km

- Model update rate 1-100 Hz₂

- Local solvers

THE VALUES OF MBSE

Model overview and classification

FLOW OF SIMULATION MODELS

- Origin of models :
 - Deliverables from sub suppliers (e.g. Engine)
 - In-house development of aircraft specific models (e.g. Mass & Inertia)
 - In-house development of simulator specific models (e.g. Cockpit)

Challenges in Aircraft Simulation

Some challenges in set-up and support of large-scale simulations:

- Different operating systems & simulation platforms
- Many models ~100 including "legacy codes"
- Variants of the systems that the models represent
- Variants of "the same" model, e.g. different levels of fidelity
- Versions of models, e.g. due to error correction
- Parametric models with different sets of System Parameters
- Lack of standards & tools for collaboration

Basic components of M&S Software Product Line (SPL)

- Basic Mean: Assets with variations.
- Variation methods:
 - Model variants. A "variant master" describe their properties
 - Configurable models. Switches to instantiate desired behavior

Collaboration aspects of the SPL infrastructure

- Collaboration at model supplier interaction
 - Architectural requirements and standards collaboration/agreement
 - Transparency of development status
- Collaboration at customer interaction
 - Early validation of product functions and properties

Binding time alternatives

Binding Time overview

Binding at Aspect	Check-out- time	Compile-time	Run-time
Creates	Different source code variants	Different object code variants	Different instances
Used for	Reliable configuration	Implementation oriented configuration	Fast reconfiguration
Example	When security / IRP aspects is important	Target / platform variation	Reconfiguratio n at end-user site

Configuration & Customization System Architecture

Product Variant Master – an analyze

- the first step towards a configurator prototype

Object oriented model of model variants

- Objects to represent model variants
- Attributes to repr. variation points
- Rules for valid / not valid combinations

Prototype implementation

- Tacton Configurator Studio (COTS tool)

THE UTILIZATION POINTS OF MODELS

Conclusions and further work

Conclusions

- Constraints input from PDM for integration of configuration data between PDM and the simulation environment
- Model Interface Compatibility is crucial. The emerging FMI (Functional Mock-up Interface) standard is promising for improved collaboration

Further Work

- Develop a robust meta-model for model variability, configuration/customization
- Connection to emerging standards; PLMXML, FMI & SysML
 - Use XML, XSD & XSLT for data storage, exchange, presentation and mapping
- Validate prototype configurator implementation in the application project

Thank You!