

A Modular and Scalable Application Platform for Testing and Evaluating ITS Components (MoSAIC)

Tobias Lorenz

Content

- → Short Introduction
 - ✓ German Aerospace Center (DLR)
 - ✓ Institute of Transportation Systems (TS)
- ✓ MoSAIC
 - Motivation and Introduction
 - → DOMINION
 - ✓ Architecture Approaches

Short Introduction – DLR and Institute TS

MoSAIC > 01 July 2011 > 3 Institute of Transportation Systems > Aerospace technology for road and railway

German Aerospace Center

Areas of Research

- ✓ Aeronautics
- ✓ Space
- → Energy

DLR in numbers

Budget:
2006 1.168 M Euro
2007 1.224 M Euro

Locations and Employees

5.600 employees work at 28 research institutes and facilities at 13 locations (\blacksquare + \blacksquare).

Offices in Brussels, Paris and Washington.

Institute of Transportation
Systems (

Institute of Transportation Systems

Residence:	Braunschweig and Berlin
Since:	March 2001
Director:	Prof. DrIng. Karsten Lemmer
Employees:	Currently 100 employees from various scientific disciplines

Range of tasks

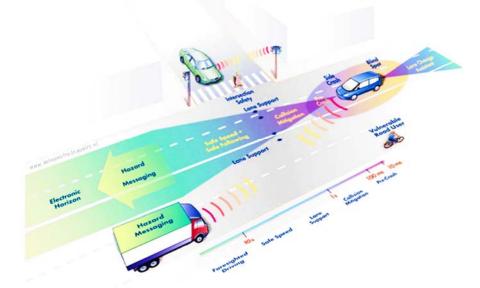
- Basic research
- Creating concepts and strategies
- → Prototype development

Fields of Research

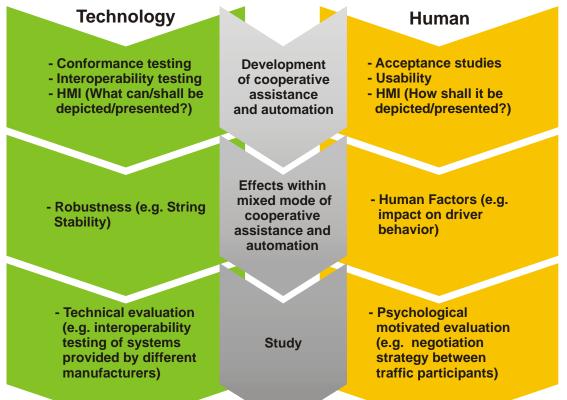
- → Automotive
- → Traffic Management

MoSAIC > 01 July 2011 > 6 Institute of Transportation Systems > Aerospace technology for road and railway

MoSAIC – Motivation and Introduction



- The determination of requirements for cooperative assistance and automation based on Vehicle-to-X technologies emphasize research questions on different levels – for example:
 - ✓ Reliability / availability
 - ✓ Interaction between human and machine
 - Interoperability of assistance and automation systems / security
 - Different penetration rates and their influence on the function of the system, traffic safety/-efficiency, driver behavior and acceptance


- ✓ Modular and Scalable Application-Platform for ITS Components
 - Laboratory infrastructure to determine requirements for cooperative assistance and automation in a context of urban traffic scenarios and their real-virtual instantiation

Design and development tool for real-virtual assistance and automation systems

Requirements for MoSAIC are presented based on the addressed technologydriven and the human-centered fields of research

MoSAIC > 01 July 2011 > 10 Institute of Transportation Systems > Aerospace technology for road and railway

connected by DOMINION

MoSAIC > 01 July 2011 > 11 Institute of Transportation Systems > Aerospace technology for road and railway

MoSAIC – DOMINION

MoSAIC > 01 July 2011 > 12 Institute of Transportation Systems > Aerospace technology for road and railway

DOMINION

- → Developed by DLR
- ✓ Follows the paradigm of service-oriented architecture (SOA)
 - A service represents a delimited and defined performance, which is produced by an application module and consumed by other application modules
 - The service interface and the functional specification is strictly defined between using and providing application module
 - Services are able to collaborate services from different context could be integrated within a new overall context (orchestration)
 - The loose coupling offers a high level of autonomy to service developers and providers

DOMINION

- Continuous development and runtime environment in all laboratories
- Formal description of services through VSDL (in-Vehicle-Service-Description-Language) derived from WSDL (WebService-Description-Language)
- Standardized, database supported collection of (test) data
- ➤ No expert knowledge about the research facilities necessary for the developer
- Fast development cycles on multiple platforms
- **Different RTE** C/C++ API OSGI-GW V2X-GW WebService-GW ViewCar HMI-Lab **Basic Services** FASCar I VR-Lab FASCar II Motion Sim Mobile Devices DOMINION virt. Sensors RSUs virt. RSUs **Data Management Services** Vehicles and other Devices Simulators and other virtual Devices **DOMINION Data Store** Standardized Interfaces (e.g. WebDAV, ODBC)

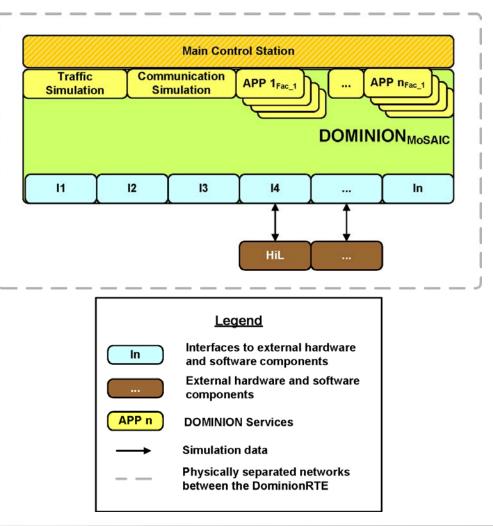
MoSAIC > 01 July 2011 > 14 Institute of Transportation Systems > Aerospace technology for road and railway

MoSAIC – Architecture Approaches

MoSAIC > 01 July 2011 > 15 Institute of Transportation Systems > Aerospace technology for road and railway

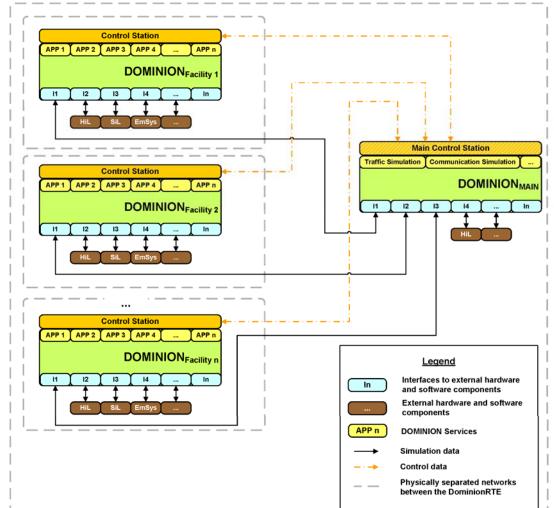
Architecture Approaches Boundary Conditions

- ✓ Research facilities are spatial separated
- Each research facility has to be useable within MoSAIC and self-sufficient without huge efforts
- ✓ Maintenance effort should be kept on the same level



MoSAIC > 01 July 2011 > 16 Institute of Transportation Systems > Aerospace technology for road and railway

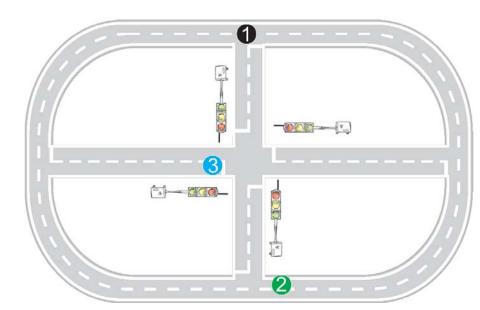
Architecture Approach I


- All research facilities are in the same communication sub-network
- One instance of DOMINION for all research facilities
 - Only one instance for Traffic, Communications simulation etc.
 - More than one instance for Driver Assistance Applications
- Only one MAIN Control station

Architecture Approach II

- Every research facility has its own communication subnetwork
- Every research facility uses its own DOMINION instance
 - DOMINION_{MAIN} to connect the instances and to run "unique" applications
- Distributed Control Station concept

MoSAIC > 01 July 2011 > 18 Institute of Transportation Systems > Aerospace technology for road and railway


MoSAIC – Test Scenario and Results

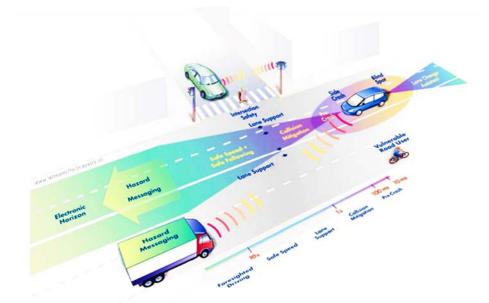
MoSAIC > 01 July 2011 > 19 Institute of Transportation Systems > Aerospace technology for road and railway

Test Scenario and Results

MoSAIC > 01 July 2011 > 20 Institute of Transportation Systems > Aerospace technology for road and railway

Test Scenario and Results

- ✓ The results show that both approaches are applicable for certain setups
- Architecture Approach I
 - ✓ For spatial non-separated setups like in the test scenario
 - ✓ More difficult for stand alone operation of simulators → one subnetwork for all simulators
 - ✓ For less complex setups
 - Less modularity compared to Approach II
 - ✓ Easier data collection
- ➤ Architecture Approach II
 - ✓ For spatial separated setups with higher complexity
 - → easy for stand alone operation of simulators → separated subnetworks for each simulator
 - Higher modularity compared to Approach I
 - Distributed data collection is more difficult



Conclusion and Next Steps

- → Both architecture approaches are possible for the realization of MoSAIC
- ➤ Finally there will be a combination of both approaches
 - ✓ Approach I as first step for non-spatial separated studies
 - ✓ Approach II for spatial separated studies
- Methodology for the control and evaluation of driver studies with more than one real human driver (EU-Project – D3CoS)
- Solution for distributed data logging for Approach II

Tobias Lorenz

Institute of Transportation Systems Lilienthalplatz 7 38108 Braunschweig

- ***** +49 531 295-3475
- tobias.lorenz@dlr.de

