@conference {Bocciarelli201448, title = {A methodological template for model driven systems engineering}, booktitle = {CEUR Workshop Proceedings}, volume = {1300}, year = {2014}, note = {cited By 0}, pages = {48-58}, publisher = {CEUR-WS}, organization = {CEUR-WS}, abstract = {The advent of formal modeling languages (e.g., UML and SysML) and system architecture frameworks (e.g., DoDAF and MODAF) has given systems engineers the ability to effectively describe the requirements as well as the behavior and the structure of systems. Approaches founded on the use of modeling languages and frameworks are grouped under the banner of MBSE (Model Based Systems Engineering). The basic idea is that a model evolves over the system development life-cycle, until it becomes the built-to baseline. In this paper, we consider a modeling approach based on the use of a metamodeling architecture that focuses on the use of models as the primary artifacts of system development. We specifically address the use of MDA (Model Driven Architecture), which allows to increase the level of automation when evolving models from the very abstract representation of a system down to the system implementation, thus making easier (i.e., at reduced cost and effort) the analysis, development and testing activities. By applying MDA concepts and standards to MBSE approaches we obtain what we refer to as MDSE (Model Driven Systems Engineering). The paper illustrates a methodological template for MDSE and shows its application to the development of a software-intensive system. Copyright {\textcopyright} held by the authors.}, keywords = {Abstract representation, Application programs, Development and testing, Formal modeling language, Level of automations, Life cycle, MDA(model driven architecture), Model-based systems engineering, Software architecture, Software design, Software intensive systems, Standards, System implementation, Systems engineering}, issn = {16130073}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84915806250\&partnerID=40\&md5=bd972de1f5baef3c33fbef58e187c81d}, author = {Bocciarelli, P. and Andrea D{\textquoteright}Ambrogio and Caponi, E. and Giglio, A. and Paglia, E.}, editor = {D{\textquoteright}Ambrogio A., Leardi C., Arrichiello V., Garro A., Poloni C., Tundis A.} } @conference {Gianni2012, title = {Model-driven performance prediction of HLA-based distributed simulation systems}, booktitle = {Proceedings - Winter Simulation Conference}, year = {2012}, note = {cited By 3}, abstract = {Performance models offer a convenient tool to assess design alternatives and predict the execution time of distributed simulation (DS) systems at design time, before system implementation. Currently, performance models are to be manually developed and the related extra effort often becomes the limiting factor for their cost- and time-effective use. In this paper, we aim to reduce this extra effort with the introduction of a model-driven method for the automated building of performance models whose evaluation provides a prediction about of the execution time of a distributed simulation system. As such, the method contributes to bring software performance engineering techniques into the distributed simulation system lifecycle. In particular, we show how the SysML-based specification of the system to be simulated and the design documents of the DS system can be used to derive the topology and the parameters of a performance model specified according to the Extended Queueing Network formalism. {\textcopyright} 2012 IEEE.}, keywords = {Automated buildings, Computer simulation, Design, Design alternatives, Design documents, Design time, Distributed computer systems, Distributed simulation systems, Distributed simulations, Execution time, Forecasting, Model-driven, Model-driven method, Performance Model, Performance prediction, Software performance engineerings, System implementation, Topology}, isbn = {9781467347792}, issn = {08917736}, doi = {10.1109/WSC.2012.6465255}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874698997\&partnerID=40\&md5=a02b093d52a8995b3774ab0d2df86fb2}, author = {Gianni, D. and Bocciarelli, P. and Andrea D{\textquoteright}Ambrogio} }