@conference {157, title = {Business process modeling and simulation: State of the art and MSaaS opportunities}, booktitle = {Proceedings of the 2017 Summer Simulation Multi-Conference (SummerSim 2017)}, year = {2017}, publisher = {The Society for Modeling and Simulation International}, organization = {The Society for Modeling and Simulation International}, abstract = {

The analysis and continuous improvement of business processes (BPs) has a strategic relevance for those enterprises that strongly rely on the performance of their operational processes to deliver services and/or goods to customers. The adoption of Modeling \& Simulation (M\&S) approaches is widely recognized as a valuable solution for analyzing and improving BPs, even though it is not yet fully exploited, due to the required know-how, effort and cost. In this context, M\&S as a Service (MSaaS) is a promising paradigm that contributes to effectively ease the introduction of M\&S approaches in the BP lifecyle, by saving the investments required to build and maintain the needed hardware and software infrastructure. This paper first illustrates a survey that analyzes the state-of-The-Art regarding the adoption of M\&S approaches in the BP domain and then, starting from a set of identified open issues, proposes a next generation MSaaS architecture which aims at enabling a time-And cost-effective M\&S-based analysis of BPs. {\textcopyright} 2017 Society for Modeling \& Simulation International (SCS).

}, keywords = {Architecture, Business Process, Business process model, Continuous improvements, Cost benefit analysis, Cost effective, Cost effectiveness, Hardware and software, Investments, MSaaS, Operational process, State of the art, Surveying, Surveys, Systems engineering, Technology transfer}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029479125\&partnerID=40\&md5=ba1a219978ded9acd748ff217becba43}, author = {Bocciarelli, P. and D{\textquoteright}Ambrogio, A. and Mastromattei, A. and Paglia, E. and Giglio, A.}, editor = {Syriani E. and D{\textquoteright}Ambrogio A.} } @conference {156, title = {A cloud-based service-oriented architecture for business process modeling and simulation}, booktitle = {CEUR Workshop Proceedings {\textendash} INCOSE Italia Conference on Systems Engineering}, year = {2017}, publisher = {CEUR-WS}, organization = {CEUR-WS}, abstract = {

The adoption of Modeling \& Simulation (M\&S) approaches is widely recognized as a valuable solution for enacting a timely analysis of business processes (BPs). Despite their relevance, the effective introduction of such approaches in the BP lifecycle is still limited, due to the know-how and skills for building and implementing a simulation model and to the cost and effort for setting up and maintaining the execution platform. In this respect, this paper proposes a cloud-based architecture that exploits the M\&S as a Service (MSaaS) paradigm and containerization technology for the flexible and dynamic composition of M\&S services, so to allow business analysts to carry out an effortless and effective M\&S-based BP analysis. An example case study dealing with an e-commerce scenario is also presented in order to show the actual application of the proposed approach.

}, keywords = {Business analysts, Business Process, Business process model, Cloud-based, Cloud-based architectures, Computer architecture, Dynamic composition, Execution platforms, Information services, Service oriented architecture (SOA), Simulation model, Systems engineering, Technology transfer}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038838268\&partnerID=40\&md5=801305b85d284d68f1f5963ae4bc3f4d}, author = {Bocciarelli, P. and D{\textquoteright}Ambrogio, A. and Paglia, E. and Panetti, T. and Giglio, A.} } @conference {161, title = {An HLA-based BPMN extension for the specification of business process collaborations}, booktitle = {Proceedings - 2017 IEEE/ACM 21st International Symposium on Distributed Simulation and Real Time Applications, DS-RT 2017}, year = {2017}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, organization = {Institute of Electrical and Electronics Engineers Inc.}, abstract = {

Inter-organization business process collaboration is one of the most significant factors driving today{\textquoteright}s global business development. Such collaborations are typically composed by various processes executed by different organizations and are often difficult to specify and analyze, due to their distributed nature and to data interoperability issues. The standard notation for business process modeling, namely BPMN (Business Process Model and Notation), only provides a limited support to the specification of collaborations. This paper introduces a data model extension of BPMN inspired by the HLA (High Level Architecture) distributed simulation standard. In addition, the paper proposes a metamodel-based mapping from BPMN to HLA, which can be seen as a significant step towards the implementation of a conceptual framework for specifying and analyzing collaborative business processes by use of distributed simulation approaches. {\textcopyright} 2017 IEEE.

}, keywords = {Business process collaborations, Business process model, Collaborative business process, Conceptual frameworks, Data interoperability, Distributed simulations, High level architecture, Inter-organization, Specifications, Systems engineering}, isbn = {9781538640289}, doi = {10.1109/DISTRA.2017.8167668}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042934707\&doi=10.1109\%2fDISTRA.2017.8167668\&partnerID=40\&md5=6c81677377651843e2f16ce6cf4cc261}, author = {Bocciarelli, P. and D{\textquoteright}Ambrogio, A. and Paglia, E. and Giglio, A.} } @conference {Bocciarelli2013218, title = {4SEE: A model-driven simulation engineering framework for business process analysis in a SaaS paradigm}, booktitle = {Simulation Series}, volume = {45}, number = {4}, year = {2013}, note = {cited By 1}, pages = {218-225}, abstract = {The intrinsic geographical distribution and the increasing complexity are two significant properties of modern business processes (BPs) that have not been fully addressed by existing simulation tools for BP analysis. Quantitative analysis of BPs is essential both at design time, to predict the BP quality of service (QoS), and at execution time, to dynamically reconfigure the BP and guarantee the pre-agreed QoS. In this respect, this work proposes a model-driven QoS-aware framework for simulation-based quantitative analysis of BPs. Specifically, the framework adopts a distributed simulation approach that replicates the service-oriented infrastructure of a BP into the corresponding simulation infrastructure based on the HLA-Evolved standard. The proposed framework assumes a scenario in which service providers publish a set of simulation-oriented services that can be subsequently used by interested consumers to dynamically discover and evaluate the QoS of the offered services. Key to the economical feasibility of this scenario is that a model-driven approach is used to automate the derivation of the simulation software from the BPMN (Business Process Model \& Notation) models of the actual BPs. The paper presents both the proposed model-driven framework, named 4SEE, and an example application to a BP for an e-commerce scenario.}, keywords = {Business process analysis, Business process model, Computer simulation, Computer software, Distributed simulations, Economical feasibility, Model driven approach, Quality of service, Service-oriented infrastructures, Simulation engineering, Simulation software}, isbn = {9781627480321}, issn = {07359276}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84876848381\&partnerID=40\&md5=735bc33d9335c85e8f26a7d6dfe860c8}, author = {Bocciarelli, P. and Andrea D{\textquoteright}Ambrogio and Gianni, D.} } @conference {Bocciarelli2012, title = {A model-driven method for building distributed simulation systems from business process models}, booktitle = {Proceedings - Winter Simulation Conference}, year = {2012}, note = {cited By 6}, abstract = {The analysis of modern business processes implemented as orchestration of software services demands for new approaches that explicitly take into account the inherent complexity and distribution characteristics of such processes. In this respect, Distributed Simulation (DS) offers a viable tool to cope with such a demand, due to the aggregation, scalability, representativeness and load balancing properties that it allows to achieve. However, the use of DS is mostly limited by the specialized technical know-how and the extra-development that DS requires with respect to approaches based on conventional local simulation. This paper proposes a model-driven method that enables the DS-based analysis of business processes by introducing the automated transformation of business process models into analysis models that are specified as Extended Queueing Network (EQN) models and executed as distributed simulations. The paper also presents an example application to a business process for an e-commerce scenario. {\textcopyright} 2012 IEEE.}, keywords = {Analysis models, Automated transformations, Business Process, Business process model, Computer simulation, Distributed computer systems, Distributed simulation systems, Distributed simulations, Distribution characteristics, Inherent complexity, Load balancing properties, Model-driven method, New approaches, Software services, Technical know hows, Technology transfer}, isbn = {9781467347792}, issn = {08917736}, doi = {10.1109/WSC.2012.6465106}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874755866\&partnerID=40\&md5=8d358a15fcb545b3725d825b701fc795}, author = {Bocciarelli, P. and Pieroni, A. and Gianni, D. and Andrea D{\textquoteright}Ambrogio} } @conference {Bocciarelli2011160, title = {A BPMN extension for modeling non functional properties of business processes}, booktitle = {Simulation Series}, volume = {43}, number = {1 BOOK 4}, year = {2011}, note = {cited By 27}, pages = {160-168}, abstract = {Business Process Management (BPM) is an holistic approach for describing, analyzing, executing, managing and improving large enterprise business processes, which can be seen as collections of related tasks executed to accomplish well-defined goals. This paper introduces a notation for the description of a business process in terms of both functional and non-functional properties, specifically addressing the performance and reliability characterization of a business process. In the BPM context, the Business Process Modeling Notation (BPMN) is the de-facto standard for the high-level description of business processes. Unfortunately BPMN does not support the characterization of the business process in terms of non-functional properties such as performance and reliability. To overcome such limitation, this paper introduces PyBPMN (Performability-enabled BPMN), a lightweight BPMN extension for the specification of properties that address both performance and reliability. The proposed extension is based on an approach that exploits principles and standards introduced by the Model Driven Architecture (MDA), thus obtaining significant advantages in terms of easy customization and improved automation. The paper also presents an example application of the proposed extension to show how it enables the automated transformation of a business process model into a parameterized performance model whose execution gives insights about the process behavior.}, keywords = {Administrative data processing, BPMN, Business Process, Business process management, Business process model, Business Process Modeling Notation (BPMN), Computer simulation, Enterprise resource management, MDA, Model driven architectures, Performance and reliabilities, Reliability, Software architecture, Systems engineering}, isbn = {9781617828386}, issn = {07359276}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887029950\&partnerID=40\&md5=286bf26106c501019949590c37d312e2}, author = {Bocciarelli, P. and Andrea D{\textquoteright}Ambrogio} }