@conference {157, title = {Business process modeling and simulation: State of the art and MSaaS opportunities}, booktitle = {Proceedings of the 2017 Summer Simulation Multi-Conference (SummerSim 2017)}, year = {2017}, publisher = {The Society for Modeling and Simulation International}, organization = {The Society for Modeling and Simulation International}, abstract = {

The analysis and continuous improvement of business processes (BPs) has a strategic relevance for those enterprises that strongly rely on the performance of their operational processes to deliver services and/or goods to customers. The adoption of Modeling \& Simulation (M\&S) approaches is widely recognized as a valuable solution for analyzing and improving BPs, even though it is not yet fully exploited, due to the required know-how, effort and cost. In this context, M\&S as a Service (MSaaS) is a promising paradigm that contributes to effectively ease the introduction of M\&S approaches in the BP lifecyle, by saving the investments required to build and maintain the needed hardware and software infrastructure. This paper first illustrates a survey that analyzes the state-of-The-Art regarding the adoption of M\&S approaches in the BP domain and then, starting from a set of identified open issues, proposes a next generation MSaaS architecture which aims at enabling a time-And cost-effective M\&S-based analysis of BPs. {\textcopyright} 2017 Society for Modeling \& Simulation International (SCS).

}, keywords = {Architecture, Business Process, Business process model, Continuous improvements, Cost benefit analysis, Cost effective, Cost effectiveness, Hardware and software, Investments, MSaaS, Operational process, State of the art, Surveying, Surveys, Systems engineering, Technology transfer}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029479125\&partnerID=40\&md5=ba1a219978ded9acd748ff217becba43}, author = {Bocciarelli, P. and D{\textquoteright}Ambrogio, A. and Mastromattei, A. and Paglia, E. and Giglio, A.}, editor = {Syriani E. and D{\textquoteright}Ambrogio A.} } @conference {156, title = {A cloud-based service-oriented architecture for business process modeling and simulation}, booktitle = {CEUR Workshop Proceedings {\textendash} INCOSE Italia Conference on Systems Engineering}, year = {2017}, publisher = {CEUR-WS}, organization = {CEUR-WS}, abstract = {

The adoption of Modeling \& Simulation (M\&S) approaches is widely recognized as a valuable solution for enacting a timely analysis of business processes (BPs). Despite their relevance, the effective introduction of such approaches in the BP lifecycle is still limited, due to the know-how and skills for building and implementing a simulation model and to the cost and effort for setting up and maintaining the execution platform. In this respect, this paper proposes a cloud-based architecture that exploits the M\&S as a Service (MSaaS) paradigm and containerization technology for the flexible and dynamic composition of M\&S services, so to allow business analysts to carry out an effortless and effective M\&S-based BP analysis. An example case study dealing with an e-commerce scenario is also presented in order to show the actual application of the proposed approach.

}, keywords = {Business analysts, Business Process, Business process model, Cloud-based, Cloud-based architectures, Computer architecture, Dynamic composition, Execution platforms, Information services, Service oriented architecture (SOA), Simulation model, Systems engineering, Technology transfer}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038838268\&partnerID=40\&md5=801305b85d284d68f1f5963ae4bc3f4d}, author = {Bocciarelli, P. and D{\textquoteright}Ambrogio, A. and Paglia, E. and Panetti, T. and Giglio, A.} } @conference {161, title = {An HLA-based BPMN extension for the specification of business process collaborations}, booktitle = {Proceedings - 2017 IEEE/ACM 21st International Symposium on Distributed Simulation and Real Time Applications, DS-RT 2017}, year = {2017}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, organization = {Institute of Electrical and Electronics Engineers Inc.}, abstract = {

Inter-organization business process collaboration is one of the most significant factors driving today{\textquoteright}s global business development. Such collaborations are typically composed by various processes executed by different organizations and are often difficult to specify and analyze, due to their distributed nature and to data interoperability issues. The standard notation for business process modeling, namely BPMN (Business Process Model and Notation), only provides a limited support to the specification of collaborations. This paper introduces a data model extension of BPMN inspired by the HLA (High Level Architecture) distributed simulation standard. In addition, the paper proposes a metamodel-based mapping from BPMN to HLA, which can be seen as a significant step towards the implementation of a conceptual framework for specifying and analyzing collaborative business processes by use of distributed simulation approaches. {\textcopyright} 2017 IEEE.

}, keywords = {Business process collaborations, Business process model, Collaborative business process, Conceptual frameworks, Data interoperability, Distributed simulations, High level architecture, Inter-organization, Specifications, Systems engineering}, isbn = {9781538640289}, doi = {10.1109/DISTRA.2017.8167668}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042934707\&doi=10.1109\%2fDISTRA.2017.8167668\&partnerID=40\&md5=6c81677377651843e2f16ce6cf4cc261}, author = {Bocciarelli, P. and D{\textquoteright}Ambrogio, A. and Paglia, E. and Giglio, A.} }