@conference {Bocciarelli2012, title = {A model-driven method for building distributed simulation systems from business process models}, booktitle = {Proceedings - Winter Simulation Conference}, year = {2012}, note = {cited By 6}, abstract = {The analysis of modern business processes implemented as orchestration of software services demands for new approaches that explicitly take into account the inherent complexity and distribution characteristics of such processes. In this respect, Distributed Simulation (DS) offers a viable tool to cope with such a demand, due to the aggregation, scalability, representativeness and load balancing properties that it allows to achieve. However, the use of DS is mostly limited by the specialized technical know-how and the extra-development that DS requires with respect to approaches based on conventional local simulation. This paper proposes a model-driven method that enables the DS-based analysis of business processes by introducing the automated transformation of business process models into analysis models that are specified as Extended Queueing Network (EQN) models and executed as distributed simulations. The paper also presents an example application to a business process for an e-commerce scenario. {\textcopyright} 2012 IEEE.}, keywords = {Analysis models, Automated transformations, Business Process, Business process model, Computer simulation, Distributed computer systems, Distributed simulation systems, Distributed simulations, Distribution characteristics, Inherent complexity, Load balancing properties, Model-driven method, New approaches, Software services, Technical know hows, Technology transfer}, isbn = {9781467347792}, issn = {08917736}, doi = {10.1109/WSC.2012.6465106}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874755866\&partnerID=40\&md5=8d358a15fcb545b3725d825b701fc795}, author = {Bocciarelli, P. and Pieroni, A. and Gianni, D. and Andrea D{\textquoteright}Ambrogio} } @conference {Gianni2012, title = {Model-driven performance prediction of HLA-based distributed simulation systems}, booktitle = {Proceedings - Winter Simulation Conference}, year = {2012}, note = {cited By 3}, abstract = {Performance models offer a convenient tool to assess design alternatives and predict the execution time of distributed simulation (DS) systems at design time, before system implementation. Currently, performance models are to be manually developed and the related extra effort often becomes the limiting factor for their cost- and time-effective use. In this paper, we aim to reduce this extra effort with the introduction of a model-driven method for the automated building of performance models whose evaluation provides a prediction about of the execution time of a distributed simulation system. As such, the method contributes to bring software performance engineering techniques into the distributed simulation system lifecycle. In particular, we show how the SysML-based specification of the system to be simulated and the design documents of the DS system can be used to derive the topology and the parameters of a performance model specified according to the Extended Queueing Network formalism. {\textcopyright} 2012 IEEE.}, keywords = {Automated buildings, Computer simulation, Design, Design alternatives, Design documents, Design time, Distributed computer systems, Distributed simulation systems, Distributed simulations, Execution time, Forecasting, Model-driven, Model-driven method, Performance Model, Performance prediction, Software performance engineerings, System implementation, Topology}, isbn = {9781467347792}, issn = {08917736}, doi = {10.1109/WSC.2012.6465255}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874698997\&partnerID=40\&md5=a02b093d52a8995b3774ab0d2df86fb2}, author = {Gianni, D. and Bocciarelli, P. and Andrea D{\textquoteright}Ambrogio} }